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�� A new paradigm for numerical analysis

The classical approach to numerical calculations emphasizes the role of general
computational tools that can cater for a wide range of situations� Thus� the
quest is for a method for �all� initial value problems for ordinary di�erential
equations or for �all� parabolic reaction�di�usion equations or for �all� algebraic
eigenvalue problems� The merit of this �broad�aperture� outlook is clear� since
it means that a relatively modest compendium of computational tools can
cater for a wide variety of situations� Most users of numerical mathematics
might be specialists in their own domains of expertise but are mostly of a
limited numerical �and pure�mathematical	 knowledge and experience� Hence
the attraction of tools that can be employed to a variety of situations and that
do not require profound numerical or mathematical knowledge�

Yet� a di�erent paradigm has evolved in the last few years� It is our in�
tention in this paper to explain brie
y why this alternative outlook� while not
obviating the quest for general computational tools� has important attractions
from theoretical and practical points of view alike�

The classical view of �doing mathematics� separates the analytical and the
numerical� The research into qualitative attributes of mathematical systems
and into their numerical realizations is separated both in time � the qualitative
research usually precedes the computational stage � and in space� di�erent
professionals� are likely to take part in both e�orts� often with poor cross�
disciplinary communication channels� To coin a phrase� numerical calculation
often commences at the exact moment when mathematical analysis 
nally gives
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up in despair� We believe that this attitude is wrong� At their best� mathe�
matical analysis and computation should coexist in a symbiotic relationship�
while computation tells the analyst what to prove� analysis tells the scienti
c
computational professional what to calculate�

Insofar as numerical analysis is concerned� the above sentiment means that
known qualitative information about the system in question should be embedded

whenever possible into the numerical method� Therefore� instead of a quest
for general tools� qualitative numerical analysis seeks algorithms that cater for
small collections of problems that share similar attributes� Moreover� it does
not accept that a fault line runs between analysis and computation�

We hasten to reiterate that the classical� generalist approach has its place
and we have no intention of overturning it branch and root� However� the
emerging body of results in qualitative numerical analysis makes� we believe� a
compelling case for more attention being paid also to this approach�

In the sequel of this paper we restrict our exposition to the numerical so�
lution of initial value problems for ordinary di�erential equations� This is
motivated not just by our personal interest but mainly by the signi
cant body
of results that has emerged in this area during the last decade�

�Qualitative behaviour� of ordinary di�erential equations is typically asso�
ciated either with their asymptotic attributes or with their invariants� Asymp�
totic behaviour of numerical methods has attracted a great deal of attention
since the pioneering work of Dahlquist in the Sixties� The recent emphasis
on techniques from the theory of nonlinear dynamical systems has led to an
impressive understanding and it has been comprehensively surveyed in �����
Henceforth we restrict our attention to the retention of invariants under dis�
cretization�

We refer the reader to ���� ��� for any unfamiliar concepts from di�erential
topology� di�erential geometry and theory of Lie groups�

�� Numerical methods

Two general families of numerical algorithms are most popularly applied to the
computation of a ordinary di�erential system

y� � f �t�y	� t � �� y��	 � y� � R
d
� ����	

namely a multistep �s�step	 method

sX
k��

�kyn�k � h

sX
k��

�kf ��n� k	h�yn�k	� n � Z
�
� ����	

and a Runge�Kutta ���stage	 scheme

�� � yn � h

�X
j��

a��jkj �

k� � f��n� c�	h���	�

� � �� �� � � � � ��
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yn�� � yn � h

�X
���

b�k�� n � Z
�
� ����	

Here ym � y�mh	� while h � � is a given step�length� Note that each multistep
method can be characterized in terms of the vectors � � ��k	� � � ��k	� while
a Runge�Kutta method is determined by the RK matrix A � �A��j	� the RK

weights b � �b�	 and the RK nodes c � �c�	 � A�� We recall that an important
attribute of any numerical method for ����	 is its order� namely p � Z

�
such

that yn�k � y��n � k	h	� k � �� �� � � � � s � � �s � � for ����		� implies that
yn�s � y��n � s	h	 � O�hp��	� Every Runge�Kutta method of order p � �
uniformly converges to the exact solution in a compact interval when h � ��
while the convergence of ����	 requires an extra condition� namely that all the
zeros of the polynomial

Ps
k�� �kw

k reside in jwj � � and the zeros on jwj � �
are simple�

We refer the reader to ���� for a comprehensive review of methods ����	 and
����	� The purpose of this section is just to establish the formalism for our
exposition in the sequel�

�� Quadratic conservation laws

Let us suppose that there exists S � Md�R �� the set of all d � d real matrices�
such that the exact solution of ����	 obeys the quadratic conservation law

yT �t	Sy�t	 � yT� Sy�� t � �� ����	

It is trivial to verify that the necessary and su�cient condition for ����	 is

xTSf�t�x	 � � for all t � � and x � R
d
�

A quadratic conservation law often encapsulates important qualitative in�
formation about the solution of ����	 and its retention under discretization
�that is� yTnSyn � yT� Sy�� n � Z

�
	 is the 
rst speci
c problem of the present

paper�

Theorem � �Cooper� ���	 The Runge�Kutta scheme ����	 always renders

correctly the quadratic conservation law ����	 subject to the condition M � O�

where M � �mi�j	 � M� �

mi�j � biai�j � bjaj�i � bibj � i� j � �� �� � � � � �� ����	

An important special case of quadratic conservation laws is represented by
orthogonal �ows

Y � � F �t� Y 	Y� t � �� Y ��	 � Y� � Od�R �� ����	

where F � Od�R � � od�R �� Here Od�R � is the manifold �Lie group	 of d � d

real orthogonal matrices� while od�R � is the set of d � d real skew�symmetric
matrices �the Lie algebra of Od�R �	� It is easy to verify that Y �t	 � Od�R �� t � ��
Orthogonality being a quadratic conservation law �in the underlying Frobenius
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inner product	� we can deduce from Theorem � that� subject to M � O� this
crucial structural feature of orthogonal 
ows survives under discretization by a
Runge�Kutta method� This has been independently proved by Dieci� Russell
and Van Vleck ����� while Calvo� Iserles and Zanna showed that the condition
M � O is necessary �as well as su�cient	 ���� These results can be also extended
with ease to 
ows on the Stiefel manifold�

The behaviour of multistep methods in the present context is radically
di�erent�

Theorem � �Calvo� Iserles � Zanna� ���	 For every multistep method ����	
there exists a system ����	 with a quadratic invariant which is not rendered

correctly by the numerical solution�

The above two theorems present a compelling argument in favour of Runge�
Kutta methods� insofar as correct rendition of invariants is at issue� We there�
fore concentrate on such methods in the sequel�

An alternative route to the maintenance of invariants under discretization
is represented by projective methods� Thus� in the case of orthogonal 
ows we
may solve ����	 with an arbitrary method� subsequently projecting the result
on Od�R �� e�g� with a polar factorization� Projective methods for orthogonal

ows have been presented in ���� and general issues of projection are debated
in ����

�� Hamiltonian equations

A Hamiltonian system of ordinary di�erential equations can be written in the
form

dp

dt
� �

	H�p� q	

	q
�

dq

dt
�

	H�p� q	

	p
�

t � ��
p��	 � p��

q��	 � q��
����	

The vectors p� q � R
d
denote generalized momenta and generalized positions�

respectively� in a mechanical system� Hamiltonian equations are ubiquitous in
many branches of applied mathematics and physical sciences and they exhibit
a signi
cant number of important features� Arguably� the most important
invariant associated with isospectral 
ows is their symplecticity� namely the
conservation of the alternating di�erential form dp 	 dq� Among the conse�
quences of symplecticity are the conservation of all Poincar�e invariants and the
existence of invariant tori ����

Although symplectic discretizations based on generating functions �and
primitive by modern standards	 have been available since early Eighties� the
real breakthrough arrived with the simultaneous discovery of symplectic Runge�
Kutta methods by F� Lasagni� J�M� Sanz�Serna and Y�B� Suris in �����

Theorem � ���� The Runge�Kutta method ����	 is symplectic if M � O� the

matrix M having been de�ned in ����	�
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An important caveat is associated with the implementation of symplectic
Runge�Kutta methods� It is an act of faith in the numerical community that
realistic implementation of algorithms for initial value problems requires vari�
able step sizes� Speci
cally� the local error is monitored in each step and the
size of the next step is chosen to minimize the computational cost� consistently
with user�provided error tolerance ����� �The description of numerical methods
in Section � in a constant step�size formalism is exclusively for the sake of an
ease of exposition�	 However� symplecticity requires that the step�size remains
constant throughout the whole integration and� as soon as variable step�size is
allowed� all its bene
ts are lost�

An important bene
t of symplecticity is that the error in the numerical
time�stepping scheme accumulates in a linear fashion ����� However� similar
behaviour is displayed when� instead of dp 	 dq one conserves the Hamilto�
nian energy H�p� q	 ����� The situation is further complicated because the only
�method� that renders correctly both the symplectic invariant and the Hamil�
tonian energy is the exact solution of ����	 ����� The jury is still out on the
question of what is the most appropriate invariant that should be retained in
the discretization of Hamiltonian systems�

	� Isospectral flows

It is relatively straightforward to prove that 
ows of the form

L� � �B�L	� L� � B�L	L� LB�L	� t � �� L��	 � L� � Md�R �� ����	

where B � Lip�Md�R �� Md�R ��� is isospectral� This means that the eigenvalues
of L�t	 are invariant� hence 
�L�t		 � 
�L�	� Moreover� provided that L� �
Sd�R �� the set of all d � d symmetric real matrices� and B � Sd�R � � od�R �� it
is true that L�t	 � Sd�R �� t � ��

Isospectral 
ows feature in a large number of applications� Examples in�
clude the motion of a lattice of particles under near�neighbour exponential
interaction �Toda 
ows	� the interaction of two motions of a lattice �Kac�van
Moerbeke 
ows	� applications to a range of problems in numerical algebra ���
and in linear programming ��� etc� The retention of the isospectral invariant
under discretization is often of crucial importance� an extreme case is when
speci
c isospectral 
ows �e�g� QR 
ows or double�bracket 
ows ��� ��	 are used
to calculate eigenvalues of L� or to compute inverse eigenvalue problems ����

Let fLngn�Z� be a sequence of approximants to the solution of ����	 at
the points fnhgn�Z� and denote the eigenvalues of Ln by f�n��gd���� In an
appropriate ordering� isospectrality is tantamount to �n�� � ���� for all � �

�� �� � � � � d and n � Z
�
� This� in turn� is equivalent to

trLk
n �

dX
���

�kn�� � const� n � Z
�
� k � �� �� � � � � d� ����	

For every k � Z
�

and ck � R consider the manifold Mk�ck	 �� fL � Md�R � �
trLk � ckg� The condition ����	 can be rendered in the form
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Ln �
d�

k��

Mk�ck	�

for ck � trLk
� � k � �� �� � � � � d� This motivates our interest in Runge�Kutta

methods ����	 that stay on manifolds Mk�
Every method ����	 retains a linear invariant� hence conservation of M�

is assured� Insofar as M� is concerned� this is a quadratic conservation law�
therefore Theorem � proves thatM � O is su�cient for its retention� Moreover�
it is possible to construct an isospectral problem ����	 for which M � O is
necessary as well for the retention of the quadratic invariant ����

In the case of the third integral of motion� M�� it has been proved in ���
that the departure of an arbitrary Runge�Kutta method from the manifold can
be written in the form

�h� � �h� �O�h�	�

where � � � for all problems of the form ����	 if and only if M � O� while
� � � for all problems ����	 if and only if N � O� where

ni�j�k �� biai�jai�k � bjaj�iaj�k � bkak�iak�j

� bibjai�k � bjbkaj�i � bkbiak�j � bibjbk� i� j� k � �� �� � � � � ��

Theorem � �Calvo� Iserles � Zanna� ���	 No Runge�Kutta method of

order p � � can conserve the isospectrality of the system ����	 for d � ��

Proof Choose s � f�� �� � � � � �g such that bs 
� � �since p � �� necessarilyP�
��� b� � �� hence such an s exists	� Letting i � j � k � s�

ms�s � � � �
as�s

bs
� � � ��

ns�s�s � � � �

�
as�s

bs

��
� �

as�s

bs
� � � ��

It is trivial to verify that the last two identities are contradictory� Therefore�
M � O is incompatible with N � O and we deduce that the third integral of
motion is not retained by producing for every Runge�Kutta method an example
of an isospectral 
ow for which both M � O and N � O are necessary� �

The design of isospectral solvers requires the abandonment of classical nu�
merical methods� Instead� we have proposed in ��� to use a theorem of Flaschka
that� provided U is the solution of the system

U � � B�L�t� nh		U� t � �� U��	 � I� ����	

we can obtain the solution of ����	 at t � �n� �	h from the formula

L��n� �	h	 � U�h	L�nh	U���h	� ����	
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We henceforth assume that L� � Sd�R � and B � Sd�R � � od�R �� There�
fore ����	 is an orthogonal 
ow and the inverse in ����	 can be replaced by a
transpose� The outcome is

U � � B�UL�nh	UT 	U� t � �� U��	 � I� ����	

To prevent the loss of isospectrality� we must discretize ����	 with a time�
stepping method that retains orthogonality� According to Theorems ���� for
Runge�Kutta methods a necessary and su�cient condition for this is M � O�
An implementation of such methods is discussed in ����

A useful example of an such a method is an isospectral modi
cation of the
well�known implicit midpoint rule

Ln�� � Ln � h�B�Ln����	� Ln������ n � Z
�
�

where Ln���� �
�

�
�Ln � Ln��	� which reads

Ln�� � Ln � h�B�Ln����	� Ln����� �
�

�
h�B�Ln����	�Ln�� � Ln	B�Ln����	�

A major disadvantage of orthogonal methods is that M � O implies that
the underlying scheme is necessarily implicit� Of course� unless we replace the
inverse by a transpose� we might use any viable time�stepping algorithm to
advance ����	� since ����	 is a similarity transformation and isospectrality is
assured� Unfortunately� unless the underlying method conserves orthogonality�
this procedure is bound to render the solution sequence fLngn�N nonsymmet�
ric� Sometimes this does not matter but� if symmetry is at issue� we propose
in ��� an approach which� while falling short of eliminating the symmetry error
altogether� decreases it a great deal�

Consider the systems

U � � B�UL�nh	U��	U� t � �� U��	 � I

Ln�� � U�h	L�nh	U���h	
����	

and

V � � �V B�V ��L�nh	V 	� t � �� V ��	 � I�

Ln�� � V ���h	L�nh	V �h	�
����	

Note that� while ����	 is nothing else but ����	�����	� the system ����	 corre�
sponds to an equation for V � U��� As long as we are using an orthogo�
nal solver� there is not much to choose between the two systems� However�
this is no longer true when a general method� e�g� an explicit Runge�Kutta
method� is implemented� Given an order�p method� either ����	 or ����	 results
in Ln � LT

n � O�hp��	� n � N � However� using ����	 for odd n and ����	 for
even n yields Ln � LT

n � O�hp��	� n � N ����
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� Numerical methods on differentiable manifolds

We have seen in the last three sections several examples of ordinary di�erential
systems ����	 whose solution lies on a speci
c manifold� This motivates our
interest in numerical methods with solutions on more general di�erentiable
manifolds� Suppose thus that for every y� � U � R

d
the solution y�t	 of ����	

lies on the di�erentiable manifold M�y�	� We say that a numerical method
is M�invariant� where M is the foliation of U into the manifolds M�y�	� if
yn � M�y�	 for all n � Z

�
�

We have already seen in Section � that multistep methods fail to stay on
manifolds described by ��tensors� while in Section � we have demonstrated
that Runge�Kutta methods depart from a manifold described by ��tensors�
The proof of the following� more general� theorem will feature in a forthcoming
paper�

Theorem 	 �The �Cheesecutter Theorem�� Calvo� Iserles � Zanna� ���	 Suppose
that there exist y� � U and a two�dimensional section K through the manifold

M�y�	 such that K is a level set of the function �� Unless � obeys the partial

di�erential equation

��y�xxx � ��x�
�
y�xxy � ���x�y�xyy � ��x�yyy � �� ����	

for every Runge�Kutta method ����	 there exists an ordinary di�erential system�

invariant on M� for which the Runge�Kutta method is not M�invariant�

A section through a quadratic manifold is a level set of a quadratic function
and ����	 is satis
ed� Other solutions of ����	 can be expressed in terms of
Jacobi elliptic functions or associated with solutions of the Burgers equation
���� Yet� the implication of the theorem is that retention of invariance by
Runge�Kutta methods is impossible for all but very special manifolds�

In other words� as long as numerical retention of invariance is at issue� it
is advisable to consider non�classical time�stepping algorithms� Such methods
have received increasing attention in the last few years� We have already men�
tioned the method of projections ���� An alternative is the method of rigid
frames in the normal bundle of the underlying manifold� due to Crouch and
Grossman ����� An allied approach� due to Munthe�Kaas� uses pullbacks and
Lie�group techniques ����� Yet another� perhaps intuitively simplest� approach
has been introduced by Calvo� Iserles and Zanna in ���� Henceforth we describe
it brie
y�

Let us suppose that f � C��R � R
d � R

d
� and that ����	 is invariant on

a manifold M which is of the same di�eotype as a �simpler� manifold N � By
�simpler� we mean that N �invariance is attainable by a known time�stepping
algorithm� Suppose further that a global di�eomorphism g �M�N is known�
Letting x�t	 � g�y�t		� t � �� we derive a new di�erential system�

x� �
	g�g��x	

	y
f�t� g���x		� t � �� x��	 � g�y�	� ����	
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Since the solution of ����	 stays on N � we can discretize it there with our
N �invariant numerical method� subsequently mapping yn � g���xn	� n � N �

For example� the �r sphere

M�y�	 �

�
y � R

d
�

dX
i��

jyij
r �

dX
i��

jy��ij
r

�
� r � ���
	�

can be di�eomorphed onto an �� sphere by means of

g�y	 ��
y

kyk
� g���x	 �

x

kxkr
�

We recall that� according to Theorem �� every Runge�Kutta method withM �
O is invariant on an �� sphere�

Another example is provided by the algebraic variety

M�y�	 �

�
y � R

d
�

dX
i��

yri �

dX
i��

yr��i

�
�

where r � N is odd� It is trivial to prove that

g�y	 �

�
���	

y�
y�
���

yd��



����

di�eomorphsM�y�	 onto R
d��

� Thereafter invariance can be retained by any
consistent discretization�

References

�� V�I� Arnold �����	� Mathematical Methods of Classical Mechanics ��nd
ed�	� Springer�Verlag� New York�

�� U�M� Ascher �����	� Stabilization of invariants of discretized di�erential
systems� Univ� of British Columbia Tech� Rep��

�� R�W� Brockett �����	� Dynamical systems that sort lists� diagonalize
matrices and solve linear programming problems� Lin� Alg� Applcs ����
������

�� M�P� Calvo� A� Iserles � A� Zanna �����	� Numerical solution of
isospectral 
ows� DAMTP Tech� Rep� ���� NA��� University of Cam�
bridge�

�� M�P� Calvo� A� Iserles � A� Zanna �����	� Runge�Kutta methods
on manifolds� DAMTP Tech� Rep� ���� NA��� to appear in Numerical

Analysis	 A�R� Mitchell
s ��th Birthday Volume �G�A� Watson � D�F�
Gri�ths� eds	� World Scienti
c� Singapore�

�� M�P� Calvo� A� Iserles � A� Zanna� Semi�explicit methods for isospec�
tral 
ows� in preparation�

���



�� M�P� Calvo� A� Iserles � A� Zanna� Numerical methods on di�eren�
tiable manifolds� in preparation�

�� M�T� Chu �����	� A list of matrix 
ows with applications� in Hamilto�

nian and Gradients Flows� Algorithms and Control �A� Bloch� ed�	� Fields
Institute Communications� American Math� Soc�� ������

�� G�J� Cooper �����	� Stability of Runge�Kutta methods for trajectory
problems� IMA J� Num� Anal� �� �����

��� P�E� Crouch � R� Grossman �����	� Numerical integration of ordinary
di�erential equations on manifolds� J� Nonlinear Sci� �� �����

��� L� Dieci� R�D� Russell � E�S� van Vleck �����	� Unitary integra�
tors and applications to continuous orthonormalization techniques� SIAM
J� Num� Anal� ��� ��������

��� D� Estep � A�M� Stuart �����	� The rate of error growth in
Hamiltonian�conserving integrators� Tech� Rep� SCCM������� Stanford Uni�
versity�

��� Z� Ge � J�E� Marsden �����	� Lie�Poisson Hamilton�Jacobi theory and
Lie�Poisson integrators� Phys� Lett� A ���� ��������

��� V� Guillemin � A� Pollack �����	�Di�erential Topology� Prentice�Hall�
Englewood Cli�s�

��� A� Iserles �����	�A First Course in the Numerical Analysis of Di�erential

Equations� Cambridge University Press� Cambridge�
��� H� Munthe�Kaas �����	� Lie�Butcher theory for Runge�Kutta methods�

BIT ��� ��������
��� A�M� Perelomov �����	� Integrable Systems of Classical Mechanics and

Lie Algebras� vol� �� Birkh!auser Verlag� Basel�
��� J�M� Sanz�Serna � M�P� Calvo �����	� Numerical Hamiltonian Prob�

lems� Chapman � Hall� London�
��� A�M� Stuart � A�R� Humphries�����	� Dynamical Systems and Nu�

merical Analysis� Cambridge University Press� Cambridge�
��� M� Toda �����	� Theory of Nonlinear Lattices� Springer�Verlag� Berlin�
��� F�W� Warner �����	� Foundations of Di�erentiable Manifolds and Lie

Groups� Springer Verlag� New York�

���


