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1. A NEW PARADIGM FOR NUMERICAL ANALYSIS

The classical approach to numerical calculations emphasizes the role of general
computational tools that can cater for a wide range of situations. Thus, the
quest is for a method for ‘all’ initial value problems for ordinary differential
equations or for ‘all’ parabolic reaction-diffusion equations or for ‘all’ algebraic
eigenvalue problems. The merit of this ‘broad-aperture’ outlook is clear, since
it means that a relatively modest compendium of computational tools can
cater for a wide variety of situations. Most users of numerical mathematics
might be specialists in their own domains of expertise but are mostly of a
limited numerical (and pure-mathematical) knowledge and experience. Hence
the attraction of tools that can be employed to a variety of situations and that
do not require profound numerical or mathematical knowledge.

Yet, a different paradigm has evolved in the last few years. It is our in-
tention in this paper to explain briefly why this alternative outlook, while not
obviating the quest for general computational tools, has important attractions
from theoretical and practical points of view alike.

The classical view of ‘doing mathematics’ separates the analytical and the
numerical. The research into qualitative attributes of mathematical systems
and into their numerical realizations is separated both in time — the qualitative
research usually precedes the computational stage — and in space: different
professionals, are likely to take part in both efforts, often with poor cross-
disciplinary communication channels. To coin a phrase, numerical calculation
often commences at the exact moment when mathematical analysis finally gives
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up in despair. We believe that this attitude is wrong. At their best, mathe-
matical analysis and computation should coexist in a symbiotic relationship:
while computation tells the analyst what to prove, analysis tells the scientific
computational professional what to calculate!

Insofar as numerical analysis is concerned, the above sentiment means that
known qualitative information about the system in question should be embedded
whenever possible into the numerical method. Therefore, instead of a quest
for general tools, qualitative numerical analysis seeks algorithms that cater for
small collections of problems that share similar attributes. Moreover, it does
not accept that a fault line runs between analysis and computation.

We hasten to reiterate that the classical, generalist approach has its place
and we have no intention of overturning it branch and root. However, the
emerging body of results in qualitative numerical analysis makes, we believe, a
compelling case for more attention being paid also to this approach.

In the sequel of this paper we restrict our exposition to the numerical so-
lution of initial value problems for ordinary differential equations. This is
motivated not just by our personal interest but mainly by the significant body
of results that has emerged in this area during the last decade.

‘Qualitative behaviour’ of ordinary differential equations is typically asso-
ciated either with their asymptotic attributes or with their invariants. Asymp-
totic behaviour of numerical methods has attracted a great deal of attention
since the pioneering work of Dahlquist in the Sixties. The recent emphasis
on techniques from the theory of nonlinear dynamical systems has led to an
impressive understanding and it has been comprehensively surveyed in [19].
Henceforth we restrict our attention to the retention of invariants under dis-
cretization.

We refer the reader to [14, 21] for any unfamiliar concepts from differential
topology, differential geometry and theory of Lie groups.

2. NUMERICAL METHODS
Two general families of numerical algorithms are most popularly applied to the
computation of a ordinary differential system

y' =f(ty), t>0, y(0)=y,cR? (2.1)

namely a multistep (s-step) method

> kynir =h > Bef(n+k)hy,.,), nel’, (2.2)

k=0 k=0
and a Runge—Kutta (v-stage) scheme
@r = Yo +h Y ak;,

Jj=1

k, = f((N-f-Cg)h,QO[),

£=1,2,...,v,
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Ynt1 = Yn + hzblkla n e Z+' (23)
£=1

Here y,, = y(mh), while h > 0 is a given step-length. Note that each multistep
method can be characterized in terms of the vectors a = (), 8 = (Bk), while
a Runge-Kutta method is determined by the RK matriz A = (A, ;), the RK
weights b = (bg) and the RK nodes ¢ = (¢;) = A1. We recall that an important
attribute of any numerical method for (2.1) is its order, namely p € 7" such
that y,,,., = y((n + k)h), k = 0,1,...,s —1 (s = 1 for (2.3)), implies that
Ynis = Y((n + s)h) + O(hP*!). Every Runge-Kutta method of order p > 1
uniformly converges to the exact solution in a compact interval when A — O,
while the convergence of (2.2) requires an extra condition, namely that all the
zeros of the polynomial Y, _, apw” reside in |w| < 1 and the zeros on |w| =1
are simple.

We refer the reader to [15] for a comprehensive review of methods (2.2) and
(2.3). The purpose of this section is just to establish the formalism for our
exposition in the sequel.

3. QUADRATIC CONSERVATION LAWS
Let us suppose that there exists S € My[IR], the set of all d x d real matrices,
such that the exact solution of (2.1) obeys the quadratic conservation law

yT(t)S’y(t) = ygS’yO, t > 0. (3.1)

It is trivial to verify that the necessary and sufficient condition for (3.1) is
T Sf(t,x) =0 for all t > 0 and @ € R?.

A quadratic conservation law often encapsulates important qualitative in-
formation about the solution of (2.1) and its retention under discretization
(that is, yL Sy, =yl Sy,, n € Z+) is the first specific problem of the present
paper.

THEOREM 1 (COOPER, [9]) The Runge—Kutta scheme (2.3) always renders
correctly the quadratic conservation law (3.1) subject to the condition M = O,

where M = (m; ;) € M,,
mij = b,-am- + bjajyi — bibj, 1, =1,2,...,v. (32)

An important special case of quadratic conservation laws is represented by
orthogonal flows

Y'=F(tY)Y, t>0, Y (0) =Yy € O4[RR], (3.3)
where F' : O4[R] — o4[R]. Here O4[R] is the manifold (Lie group) of d x d

real orthogonal matrices, while o4[R] is the set of d x d real skew-symmetric
matrices (the Lie algebra of O4[R]). It is easy to verify that Y (¢) € O4[R], ¢ > 0.
Orthogonality being a quadratic conservation law (in the underlying Frobenius
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inner product), we can deduce from Theorem 1 that, subject to M = O, this
crucial structural feature of orthogonal flows survives under discretization by a
Runge-Kutta method. This has been independently proved by Dieci, Russell
and Van Vleck [11], while Calvo, Iserles and Zanna showed that the condition
M = O is necessary (as well as sufficient) [4]. These results can be also extended
with ease to flows on the Stiefel manifold.

The behaviour of multistep methods in the present context is radically
different.

THEOREM 2 (CALVO, ISERLES & ZANNA, [7]) For every multistep method (2.2)
there exists a system (2.1) with a quadratic invariant which is not rendered
correctly by the numerical solution.

The above two theorems present a compelling argument in favour of Runge—
Kutta methods, insofar as correct rendition of invariants is at issue. We there-
fore concentrate on such methods in the sequel.

An alternative route to the maintenance of invariants under discretization
is represented by projective methods. Thus, in the case of orthogonal flows we
may solve (3.3) with an arbitrary method, subsequently projecting the result
on O4[R], e.g. with a polar factorization. Projective methods for orthogonal
flows have been presented in [11] and general issues of projection are debated
in [2].

4. HAMILTONIAN EQUATIONS

A Hamiltonian system of ordinary differential equations can be written in the
form

dp _  0H(p,q) 0
= ) p(0) = py,
dt 0q t>0, ° (4.1)
dg _  9OH(p,q) q(0) = g,
dt op ’

The vectors p,q € R* denote generalized momenta and generalized positions,
respectively, in a mechanical system. Hamiltonian equations are ubiquitous in
many branches of applied mathematics and physical sciences and they exhibit
a significant number of important features. Arguably, the most important
invariant associated with isospectral flows is their symplecticity, namely the
conservation of the alternating differential form dp A dg. Among the conse-
quences of symplecticity are the conservation of all Poincaré invariants and the
existence of invariant tori [1].

Although symplectic discretizations based on generating functions (and
primitive by modern standards) have been available since early Eighties, the
real breakthrough arrived with the simultaneous discovery of symplectic Runge—
Kutta methods by F. Lasagni, J.M. Sanz-Serna and Y.B. Suris in 1988.

THEOREM 3 [18] The Runge—Kutta method (2.3) is symplectic if M = O, the
matriz M having been defined in (3.2).
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An important caveat is associated with the implementation of symplectic
Runge-Kutta methods. It is an act of faith in the numerical community that
realistic implementation of algorithms for initial value problems requires vari-
able step sizes. Specifically, the local error is monitored in each step and the
size of the next step is chosen to minimize the computational cost, consistently
with user-provided error tolerance [15]. (The description of numerical methods
in Section 2 in a constant step-size formalism is exclusively for the sake of an
ease of exposition.) However, symplecticity requires that the step-size remains
constant throughout the whole integration and, as soon as variable step-size is
allowed, all its benefits are lost.

An important benefit of symplecticity is that the error in the numerical
time-stepping scheme accumulates in a linear fashion [18]. However, similar
behaviour is displayed when, instead of di A dil one conserves the Hamilto-
nian energy H(i,1) [12]. The situation is further complicated because the only
‘method’ that renders correctly both the symplectic invariant and the Hamil-
tonian energy is the exact solution of (4.1) [13]. The jury is still out on the
question of what is the most appropriate invariant that should be retained in
the discretization of Hamiltonian systems.

5. ISOSPECTRAL FLOWS

It is relatively straightforward to prove that flows of the form
L' =[B(L),L]= B(L)L — LB(L), t>0, L(0) = Ly € My[R], (5.1)

where B € Lip[My[R] — Mg4[R]], is isospectral. This means that the eigenvalues
of L(t) are invariant, hence o(L(t)) = o(Lg). Moreover, provided that Ly €
S4[R], the set of all d x d symmetric real matrices, and B : S4[R] — o4[R], it
is true that L(t) € S4[R], ¢ > 0.

Isospectral flows feature in a large number of applications. Examples in-
clude the motion of a lattice of particles under near-neighbour exponential
interaction (Toda flows), the interaction of two motions of a lattice (Kac—van
Moerbeke flows), applications to a range of problems in numerical algebra [8]
and in linear programming [3] etc. The retention of the isospectral invariant
under discretization is often of crucial importance: an extreme case is when
specific isospectral flows (e.g. QR flows or double-bracket flows [3, 8]) are used
to calculate eigenvalues of Ly or to compute inverse eigenvalue problems [8].

Let {Ln},cz+ be a sequence of approximants to the solution of (5.1) at
the points {nh}, .+ and denote the eigenvalues of L, by {\,¢}¢_;. In an

appropriate ordering, isospectrality is tantamount to A, , = Ao, for all £ =
1,2,...,dand n € 7. This, in turn, is equivalent to

d
trLﬁ:Z)\fLJEconst, neZ ', k=1,2,...,d. (5.2)
=1

For every k € 7" and ¢, € R consider the manifold My (ex) = {L € My[R] :
tr L¥ = c;}. The condition (5.2) can be rendered in the form
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d
Ln € [] Ma(ck).

k=1

for ¢, = tr LK, k = 1,2,...,d. This motivates our interest in Runge-Kutta
methods (2.3) that stay on manifolds M.

Every method (2.3) retains a linear invariant, hence conservation of M
is assured. Insofar as Ms is concerned, this is a quadratic conservation law,
therefore Theorem 1 proves that M = O is sufficient for its retention. Moreover,
it is possible to construct an isospectral problem (5.1) for which M = O is
necessary as well for the retention of the quadratic invariant [4].

In the case of the third integral of motion, Msj, it has been proved in [4]
that the departure of an arbitrary Runge—Kutta method from the manifold can
be written in the form

ah? + Bh® + O(h?),
where @ = 0 for all problems of the form (5.1) if and only if M = O, while
B =0 for all problems (5.1) if and only if N = O, where

Nijk 1= biaijaik +bjajia;k + bragiar,;
— bibjaiyk — bjbkaj,i — bkbiak,j + bibjbk, ,7,k=1,2,...,v.

THEOREM 4 (CALvO, ISERLES & ZANNA, [4]) No Runge—Kutta method of
order p > 1 can conserve the isospectrality of the system (5.1) for d > 3.
PrROOF Choose s € {1,2,...,v} such that by # 0 (since p > 1, necessarily
> 7—1 be =1, hence such an s exists). Lettingi =j =k =s,
As,s
msys = 0 = 2b— + ]. = 0,

2
Qs,s Qs,s
sss = 0 = 3 : -3—+1=0.
o (%) -a%e+

It is trivial to verify that the last two identities are contradictory. Therefore,
M = O is incompatible with N = O and we deduce that the third integral of
motion is not retained by producing for every Runge-Kutta method an example
of an isospectral flow for which both M = O and N = O are necessary. O

The design of isospectral solvers requires the abandonment of classical nu-
merical methods. Instead, we have proposed in [4] to use a theorem of Flaschka
that, provided U is the solution of the system

U' = B(L(t +nh))U, t>0, U(0)=1I, (5.3)
we can obtain the solution of (5.1) at t = (n + 1)k from the formula

L((n + 1)h) = U(h)L(nh)U~1(h). (5.4)
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We henceforth assume that Ly € S4[R] and B : S4[R] — o4[R]. There-
fore (5.3) is an orthogonal flow and the inverse in (5.4) can be replaced by a
transpose. The outcome is

U' =B(ULRRUNU, t>o0, U()=1. (5.5)

To prevent the loss of isospectrality, we must discretize (5.5) with a time-
stepping method that retains orthogonality. According to Theorems 1-2, for
Runge-Kutta methods a necessary and sufficient condition for this is M = O.
An implementation of such methods is discussed in [4].

A useful example of an such a method is an isospectral modification of the
well-known implicit midpoint rule

Ln+1 = Ln + h'[B(Ln+1/2)7 Ln+1/2]7 n e Z+7
where L, 1/2 = %(Ln + L,11), which reads

Lypg1 = Lo+ h[B(Lny1/2), Lny1jo] + $h?B(Lngry2) (Lng1 — Ln) B(Lng1)2)-

A major disadvantage of orthogonal methods is that M = O implies that
the underlying scheme is necessarily implicit. Of course, unless we replace the
inverse by a transpose, we might use any viable time-stepping algorithm to
advance (5.3), since (5.4) is a similarity transformation and isospectrality is
assured. Unfortunately, unless the underlying method conserves orthogonality,
this procedure is bound to render the solution sequence {L, },cn nonsymmet-
ric. Sometimes this does not matter but, if symmetry is at issue, we propose
in [6] an approach which, while falling short of eliminating the symmetry error
altogether, decreases it a great deal.

Consider the systems

U' = B(UL(nh)U HYU, t>0, uo)y=1
Lni1 = U(h)L(nh)U~L(h)
and
V' = —VB(VL(nh)V), t>0, V(0) =1,

_ (5.7)
Loy1 = V- (R)L(nh)V (h).

Note that, while (5.6) is nothing else but (5.3),(5.4), the system (5.7) corre-
sponds to an equation for V = U~!. As long as we are using an orthogo-
nal solver, there is not much to choose between the two systems. However,
this is no longer true when a general method, e.g. an explicit Runge-Kutta
method, is implemented. Given an order-p method, either (5.6) or (5.7) results
in L, — LY = O(h?*1), n € N. However, using (5.6) for odd n and (5.7) for
even n yields L, — LT = O(h?*?), n € N [6].
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6. NUMERICAL METHODS ON DIFFERENTIABLE MANIFOLDS

We have seen in the last three sections several examples of ordinary differential
systems (2.1) whose solution lies on a specific manifold. This motivates our
interest in numerical methods with solutions on more general differentiable
manifolds. Suppose thus that for every y, € 4 C R? the solution y(t) of (2.1)
lies on the differentiable manifold M(y,). We say that a numerical method
is M-invariant, where M is the foliation of U/ into the manifolds M(y,), if
Y, € M(y,) for all n € Z7.

We have already seen in Section 3 that multistep methods fail to stay on
manifolds described by 2-tensors, while in Section 5 we have demonstrated
that Runge-Kutta methods depart from a manifold described by 3-tensors.
The proof of the following, more general, theorem will feature in a forthcoming

paper.

THEOREM 5 (The ‘Cheesecutter Theorem’, Calvo, Iserles & Zanna, [7]) Suppose
that there exist y, € U and a two-dimensional section K through the manifold
M(y,) such that K is a level set of the function p. Unless p obeys the partial
differential equation

for every Runge—Kutta method (2.3) there exists an ordinary differential system,
wnvariant on M, for which the Runge—Kutta method is not M-invariant.

A section through a quadratic manifold is a level set of a quadratic function
and (6.1) is satisfied. Other solutions of (6.1) can be expressed in terms of
Jacobi elliptic functions or associated with solutions of the Burgers equation
[7]. Yet, the implication of the theorem is that retention of invariance by
Runge-Kutta methods is impossible for all but very special manifolds.

In other words, as long as numerical retention of invariance is at issue, it
is advisable to consider non-classical time-stepping algorithms. Such methods
have received increasing attention in the last few years. We have already men-
tioned the method of projections [2]. An alternative is the method of rigid
frames in the normal bundle of the underlying manifold, due to Crouch and
Grossman [10]. An allied approach, due to Munthe-Kaas, uses pullbacks and
Lie-group techniques [16]. Yet another, perhaps intuitively simplest, approach
has been introduced by Calvo, Iserles and Zanna in [5]. Henceforth we describe
it briefly.

Let us suppose that f € C'[R x R - ]Rd] and that (2.1) is invariant on
a manifold M which is of the same diffeotype as a ‘simpler’ manifold /. By
‘simpler’ we mean that A -invariance is attainable by a known time-stepping
algorithm. Suppose further that a global diffeomorphism g : M — N is known.
Letting (t) = g(y(t)), t > 0, we derive a new differential system,

m’Z%ylx)f(t,gl(w)), t>0,  2(0)=g(y,) (6.2)
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Since the solution of (6.2) stays on A, we can discretize it there with our
N-invariant numerical method, subsequently mapping y,, = g~ (z,), n € N.
For example, the £, sphere

d d
M(y()): {yeRd . Z|yi|T:Z|y0,i|r}v ’I"E(l,OO),
i=1 i=1

can be diffeomorphed onto an ¢y sphere by means of

Y il
19 = 9 @=L

We recall that, according to Theorem 1, every Runge—Kutta method with M =
O is invariant on an ¢ sphere.
Another example is provided by the algebraic variety

d d
M(y,) = {y eR': Ny :Zyo}
=1 =1

where r € N is odd. It is trivial to prove that

Yd—1

diffeomorphs M(y,) onto R%™. Thereafter invariance can be retained by any
counsistent discretization.
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